Showing posts with label Cleaning Firearms. Show all posts
Showing posts with label Cleaning Firearms. Show all posts

Monday, August 8, 2011

Cleaning Firearms: Modern Methods

In the last post, we studied some historic instructions on cleaning firearms. Actually, most of what was stated in that post still hold true today, though some of the cleaning solvents and materials have changed. So here's how a firearm owner cleans his weapon these days:

  1. Weapon is unloaded by the person cleaning the weapon. Person points the firearm in a safe direction, makes sure finger is far away from the trigger, magazine is removed and he/she also checks the chamber to make sure that there isn't already a cartridge in the chamber and also enables any safeties. Remember: SAFETY FIRST!
  2. Person disassembles the firearm for cleaning, only so far as recommended by the manufacturer's manual. Typically, disassembly should only involve removing a few parts at most (field stripping). It is not necessary, for example, to disassemble the entire trigger assembly to clean a firearm. If more extensive work is required, it is probably best to consult a competent gunsmith.
  3. After the person field strips the firearm, he or she visually inspects the parts for signs of excessive wear or damage. If any problems are seen, it is best to send it to a gunsmith immediately.
  4. The person cleaning the firearm should have a cleaning kit available. Most commonly available kits have a cleaning rod (usually one that is disassembled into multiple parts), a few cotton cloth cleaning patches, a couple of patch holders or jags (or both jags and cloth holders) that attach to the end of the cleaning rod and to which a cloth patch is attached, a bore brush whose diameter depends on the firearm being cleaned, a hand brush, assorted solvents and gun greases and a bottle of gun oil. The user may augment this kit with extra brushes, jags, cloth holders and patches of different diameters, especially if the user owns multiple firearms of different bores. Sometimes, additional cleaning rods may also need to be purchased in appropriate diameters for different calibers.
  5. When possible, the user always tries to clean from the breech end towards the muzzle (i.e.) following the same direction as the bullet. If it is not possible to do it in this direction (for instance, in some revolvers), then one should take precautions to not push any debris into the action of the firearm. Some cleaning kits include a muzzle guard for situations where cleaning is done from the muzzle end.
  6. The barrel contains a couple of types of fouling: the first is due to powder residue (powder fouling) and the second is metal fouling, which is caused by metal particles from the cartridge case (brass) and metal particles from the bullet itself (lead and copper) getting deposited into the rifling grooves. There are different solvents that deal with powder fouling vs. metal fouling and some solvents (such as Hoppe's #9) do both.
  7. The user first attaches a patch holder or a jag to the cleaning rod and attaches a cotton patch cloth at the end. The user then soaks the patch with suitable solvent and pushes it completely through the bore. This removes some of the loose powder and metal fouling in the barrel.
  8. The user removes the patch holder and attaches the appropriately sized bore brush to the cleaning rod. Then the user soaks the brush in more solvent and pushes it through the bore again. As the user does this, the brush turns as it engages the rifling in the barrel. The user completely pushes the brush through the barrel, until the brush emerges on the other side and then pulls it back completely through and repeats the process 12-20 times. This loosens all the tiny metal particles and fouling that are stuck in the rifling grooves. It is not a good idea to reverse direction with the brush while it is still inside the barrel, because it will ruin the brush prematurely.
  9. The user then leaves the barrel aside to soak the solvent for around 5 minutes, so that the solvent has a chance to dissolve some of the lead or carbon buildup still clinging to the barrel. In the meantime, the user grabs the hand brush (or even an ordinary toothbrush), dips it in more solvent and uses it to brush the exposed action, receiver, bolt, trigger assembly etc. and remove the gunpowder residue in here.  The user then dries all the scrubbed parts with a clean dry cloth.
  10. After the solvent has had a chance to work its magic inside the barrel, the user then takes the cleaning rod and attaches a cloth holder or a jag tip to the end and attaches a clean dry patch on it. The user then pushes it through the barrel completely. Most likely, this patch will come out very dirty. The user then replaces the patch with a new clean one and then repeats the process again for a few times, until the patch comes out looking relatively clean.
  11. The user then applies a few drops rust-preventative to a clean cloth patch and runs it down the barrel again. This leaves a very thin coating of rust preventative solution in the barrel bore, The user may also apply this to the outside of the barrel as well.
  12. The user then applies a very little amount of gun oil to lubricate the metal parts recommended in the manual. It is not a good idea to use too much gun oil for guns with wood stocks, as the excess oil could soak into the wood stock and ruin it (gun oil is very different from linseed oil and has a detrimental effect on wood). Excess oil also collects dust and dirt much easier, so it is a good idea to apply very little gun oil indeed, unless the gun is intended to be stored away for a while.
  13. For the same reason, it is not a good idea to put solvent or lubricant inside the magazine because the excess gun oil will collect dirt and dust in the magazine, while solvent will react with the cartridge casings and primer and degrade them. Magazines should only be cleaned with dry brushes if needed.
  14. Finally, the user uses a small flash light to look up through the barrel to make sure it looks clean.
  15. The user then reassembles the firearm and uses a silicone cloth to wipe away any finger prints.
Instead of a cleaning rod, some people use a bore snake instead. This is a long flexible cord with a section of brushes and cotton cloth on one end. The user merely drops the cord through the barrel and pulls it through to the other end. A couple of runs of this and the barrel is clean and ready to go.

Lastly, before we leave, here's a few videos that demonstrate what we just discussed above:








Happy viewing!

Cleaning Firearms: A Historical Perspective

In our discussion about carrying conditions a little while ago, it was mentioned that condition 4 is generally used by people who plan to store their firearms for a long while in a gun vault or safe (say, at the end of the hunting season). Which brings up a side topic -- the user also cleans their firearms before putting them into storage. This inspired the next series of articles which are going to deal with the subject of cleaning firearms.

First, we will look at some instructions for sportsmen, reproduced from W.W. Greener's book The Gun and its Development, Ninth Edition from 1910. Bear in mind that this was written for the English sportsman of the early 1900s. So while some of the cleaning equipment and solvents may appear to be a bit antiquated, these were possibly the best available from around 1850 to the early 1900s. The instructions proceed as follows:

To clean a gun after a day's shooting. If a gun be wet, it should be wiped dry at once, but the cleaning of the barrels and breech-action may be left until the sportsman or his servant has time to do it properly.


To clean the barrels. Use the cleaning-rod, with tow and oil, or turpentine. To remove the fouling, put muzzles on a piece of wood, and push the rod down to within an inch of the muzzle, and draw up to the chamber. Do this two or three times; and push right through. Use the bristle brush, or the rod with plenty of flannel; finish with the mop soaked in refined neatsfoot, pure Arctic sperm oil, or vaseline.


Never half-clean the barrels; always wipe them dry and clean before finally oiling, and do not put the mop used for oiling into a foul barrel. To remove leading from the inside of a gun barrel, soak well with turpentine; then clean well with a bristle brush, or even with a wire brush, but never use emery if the shooting qualities of the gun are valued.


Always wipe the bed, face, and joint of the breech-action with an oily rag or flannel. A little linseed oil may be rubbed over the stock occasionally.


Before putting the gun together, ascertain that all the bearing parts are free from dust and grit.


The joint may be lubricated with a mixture of half best Russian tallow and half petroleum. In most hammerless guns, if the cover plate underneath the breech-action body is taken off, the locks may be inspected, oiled, and any rust or clogged oil and dust removed from the bent.


The cocking-lifters of hammerless guns, the holding-down and top bolts, and the triggers, if they have a tendency to clog, may be touched up with a knitting-needle dipped in petroleum. They must be lubricated, whenever they require it, with chronometer oil, Rangoon oil, or finest neatsfoot.


Do not use a feather for the purpose of putting on any lubricant; a wire knitting-needle or bodkin is much better.


To remove rust from the inside or outside of a barrel, procure a tub, and with a kettle of boiling water well scald the barrels inside and out, inserting a wooden peg in one of the barrels to hold them by, wipe perfectly dry with flannel, and then oil. It is as well to do this before putting the gun aside for any length of time.


If the barrels are foul through using inferior powder, and the fouling has become hard and dry, cold water, or hot soap-suds, may be used to cleanse them. Water boiling hot kills rust.


Turpentine, often used successfully to clean the residue from gun barrels, will give great trouble if it gets into the fine-fitting parts of the mechanism of the breech-action and locks, and must therefore be used with care.


Rusty or tight breeches in muzzle-loading barrels may often be turned out, providing the breech-ends of the barrels have been soaked in petroleum, Very obstinate breeches may require to be well heated, as well as lubricated, before they can be turned out, but usually petroleum will be found a sufficient remedy for incipient rust of the working parts. All the parts of the mechanism may be cleaned with petroleum; it removes clogged vegetable and animal oils well.


So that was quite the read, wasn't it. A brief word on some of the solvents mentioned in the book:

Tallow is made by rendering the fat of beef or mutton, especially the fat found around the loins and kidneys of the animal. The process of "rendering" is as follows: raw fat is ground up and then placed in a vessel and heated with steam to drive off the moisture. As the moisture is removed, the fat is released from the fat cells. This fat is percolated off and the remaining solids are squeezed under pressure to release more fat as well (or they may be separated using a centrifuge). The tallow fat is a yellow liquid when hot, but cools down to a white creamy solid at room temperature.
Tallow being made. Note that it is currently a yellow liquid, as the tallow is still hot.

The tallow after it has cooled down to room temperature.

The tallow fat was traditionally used for soap-making, candle-making, food (it didn't spoil easily even without refrigeration), lubrication of  locomotive and steamship engines etc. Russian tallow was traditionally made from mutton mainly and by the 1860s, it was cheaper to obtain in England than English-made tallow and was much more available than tallow from other British colonies such as Australia, New Zealand, the East Indies and South America. People still make tallow today, for use in food (McDonalds used tallow for cooking french fries until 1990), lubrication, high end shaving soap, shoe polish, bio-diesel etc.

Neatsfoot oil is also still around today. Like tallow, it is also made by rendering beef parts, however the parts used are only the shin bones and feet (minus the hooves) of cattle. In fact, the word neat is an old word for cattle, which is where the word neatsfoot comes from. The resulting oil is a light yellow color. Neatsfoot oil is still made today and mainly used for conditioning leather products. It is available at places like amazon.com or Walmart.

Click on image to enlarge. Public domain image.

Arctic Sperm Oil is a bit of a misnomer, as it is not actually made from the Sperm whale, but from the Northern Bottlenose whale, Hyperoodon Rostratus. This whale is a lot smaller (adult size is about 32 feet long) than the sperm whale and is found in the northern arctic waters between Europe and North America. Whalers in the 19th century found that this whale is also capable of producing oil that is very similar in chemical composition to Sperm Oil from the Sperm whale, but its oil has a more pronounced tendency to "gum" up at lower temperatures, which is why Arctic Sperm Oil was always sold cheaper than the true Sperm Oil. Because the two oils could not be told apart easily, some unscrupulous producers of Sperm Oil would sometimes adulterate their product with the cheaper Arctic Sperm Oil. Note that while both Sperm Oil and Arctic Sperm Oil were used as lubricants, but Mr. Greener appears to be recommending the cheaper of the two. Both oils were used for oil lamps and candle production, but were gradually replaced by cheaper petroleum products starting in the 1850s. However, they were still used as lubricants well into the 1960s. As of the late 1960s and 1970s, due to whaling restrictions, neither oil is available in the market these days. Animal conservationists will be happy to note that the Northern Bottlenose whale species is thriving again and the species population status is classified as "least concern". Sperm whales are also on the path to recovery and are now classified as "vulnerable" rather than "endangered".

Chronometer oil was made from extracting the oil from the head and jaws of the porpoise family (i.e.) porpoises, pilot whales, killer whales etc., in a very similar process to extracting the oil from sperm whales and bottlenose whales. It was used to lubricate the working parts of fine watches and ships' chronometers. As with sperm oil, it is no longer used and is replaced by other alternatives.

Petroleum is also mentioned. Petroleum was known about 4000 years ago, chiefly because it was available from natural oil springs in the Middle East. By the 1850s, the process of refining petroleum to produce kerosene was invented and drilling started soon after. However, petroleum refining really took off only after automobiles became popular. Before then (as in the early 1900s), it was possible to buy raw petroleum at the local chemists.

Linseed oil is made by pressing seeds of the flax plant. The oil is edible, but it is mainly used in paints, as a hardener for putty, in the manufacture of linoleum and as a wood finish. Linseed oil was traditionally used to finish wood gun stocks for centuries and it still continues to be used for that purpose.

Rangoon oil is actually a heavy petroleum distillate roughly along the lines of kerosene and fuel oil. It has a slow evaporation rate and was used as a rust preventative by the British around the 1850s. They found that it worked rather well, especially in hot and steaming jungles. The name comes from the fact that the first source was from a natural oil well found in Rangoon (now Yangoon), Burma (now Myanmar).

Rangoon oil may still be purchased today, especially from dealers who deal with antique and fine custom-made firearms.